
Journal of Applied Mechanics and Technical Physics, Vol. 43, No. 4, pp. 593–602, 2002

WATER INJECTION INTO A GEOTHERMAL RESERVOIR

UDC 532.546; 536.421V. Sh. Shagapov,1 U. R. Il’yasov,2 and L. A. Nasyrova3

The previously obtained criterion which distinguishes water injection regimes accompanied by vapor-
ization of injected water or vapor condensation is extended to the radially symmetric problem. The
effects of cold liquid injection rate and the initial temperature, pressure, and capacity of a geothermal
reservoir on hydrodynamic and temperature profiles are examined.

Introduction. Heat from an underground high-temperature reservoir which is a porous permeable rock
is obtained as a heat carrier (usually hot water or vapor). A method for extracting this heat, especially in the
case where the porous medium is initially saturated with vapor is the production of artificial circular systems by
injecting water into heated permeable rock. Some aspects of this problem are considered in [1–7].

The goals of the present paper are as follows: analysis of the effect of parameters of a vapor-saturated
porous medium and cold liquid injection rates on temperature and hydrodynamic fields; determination of conditions
that allows differentiation between filtration regimes involving vaporization of the injected liquid and the regimes
accompanied by vapor condensation; construction of analytical solutions for rather high injection rates, which are
of greatest practical interest.

1. Constitutive Equations. To describe filtration processes and heat and mass transfer during water
injection into a porous medium, we use the following assumptions. The temperatures of the porous medium and the
saturating material (water or vapor) are identical. In addition, we assume that the skeleton of the porous medium
is incompressible and immovable, and the porosity is constant.

Within the framework of the adopted assumptions, the conservation equation for the mass of water (vapor)
is written as

∂(mρi)
∂t

+ r−n
∂

∂r
(rnmρivi) = 0,

where m is the porosity, ρi (i = liq or vap) are the densities of the phases, vi (i = liq or vap) are the phase velocities,
r is the coordinate, and t is time; the subscripts “liq,” “vap,” and “sk” correspond to the water, vapor, and porous
skeleton, respectively

For water and vapor filtration, we use the Darcy law

mvi = − k

µi

∂p

∂r
(i = liq, vap),

where k and µi are the absolute permeability and dynamic viscosity of the phases.
The equation of heat inflow ignoring the barometric effect is written as

ρc
∂T

∂t
+mρicivi

∂T

∂r
= r−n

∂

∂r

(
rnλ

∂T

∂r

)
,

ρc = mρici + (1−m)ρskcsk, λ = mλi + (1−m)λsk (i = liq, vap).

Here ρc is the specific volume heat of the system “porous medium–vapor (water),” ci and λi are the specific heat
and thermal conductivity of the phases, and λ is the thermal conductivity of the system “porous medium–vapor
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(water).” Because the parameters of the skeleton of the porous medium make a major contribution to the values of
ρc and λ, we consider them constant (ρc = const and λ = const) over the entire filtration zone (vapor and water
filtration zone).

For the vapor, we use the Clapeyron–Mendeleev equation, and the water is considered incompressible:

ρvap = p/(RvapT ), ρliq = ρliq,0.

Here p and T are the pressure and temperature and Rvap is the gas constant; the subscript 0 corresponds to
parameters of the initial (undisturbed) state of the porous medium.

The above equations must be supplemented by the relations on the phase-transition surface (r = r(s)) that
follow from the law of conservation of mass and the heat-balance condition:

mρliq(vliq − ṙ(s)) = mρvap(vvap − ṙ(s)),
(
λ
∂T

∂r

)+

−
(
λ
∂T

∂r

)−
= mρliql(vliq − ṙ(s)), ṙ(s) =

dr(s)

dt
. (1.1)

Here l is the specific heat of the phase transition. The subscript (s) corresponds to parameters on the phase-
transition boundary. On this boundary, the temperature and pressure are considered continuous:

T− = T+ = T(s), p− = p+ = p(s).

In addition, on the phase-transition surface, the temperature T(s) and the pressure p(s) are related by the equation

T(s) = T∗ ln−1 (p∗/p(s)),

where T∗ and p∗ are empirical parameters determined from table data.
Along with the phase-transition front, we introduce a labelled boundary (r = r(m)) of the injected system,

which is determined from the condition of equality of the rates of motion of water (vapor) and this boundary
(v = ṙ(m)). In the regime in which vapor condensation occurs on the phase-transition boundary, the labelled
boundary r(m) is behind the phase-transition front (i.e., in the water filtration region), and in the regime involving
vaporization of injected water, it is ahead of the phase-transition front (i.e., in the vapor filtration region). Thus,
there is an intermediate zone between the phase-transition front and the labelled boundary. In the first filtration
regime, condensed vapor is present in this zone, and in the second regime, vaporized water is present there. The
labelled boundary for the two regimes is determined from the condition vliq = ṙ(m) or vvap = ṙ(m) (r = r(m)).

Let us consider the one-dimensional [flat (n = 0) and axisymmetric (n = 1)] problems of injection of water
having temperature Te into the porous medium saturated with vapor. We assume that in the initial state, the
geothermal reservoir at temperature T0 is completely saturated with vapor and is under pressure p0. Injection
occurs at constant pressure pe on the boundary (n = 0) or constant volume flow rate q (n = 1). With allowance for
the assumptions made above, the initial and boundary conditions are written as

n = 0: p = p0, T = T0 (r > 0, t = 0), p = pe, T = Te (r = 0, t > 0),
(1.2)

n = 1: p = p0, T = T0 (r > 0, t = 0), −2πr
( k

µliq

∂p

∂r

)
= q, T = Te (r → 0, t > 0).

We introduce the dimensionless parameter γ, which is the ratio of the total rate of vaporization on the
phase-transition boundary to the total amount of injected water:

n = 0: γ = (vliq − ṙ(s))/vliq, n = 1: γ = 2πr(s)m(vliq − ṙ(s))/q.

Within the framework of the system considered, both problems are self-similar.
We introduce dimensionless pressure, temperature, density, and a self-similar variable:

P =
p

p0
, Θ =

T

T0
, ρ̃ =

ρvap

ρvap,0
=
P

Θ
, ξ =

r

2
√
at

(
a =

λ

ρc

)
.

Then, the heat- and piezoconduction equations can be written as

ξ−n
d

dξ

(
ξn

dP

dξ

)
= 0, ξ−n

d

dξ

(
ξn

dΘ
dξ

)
= −2ξ

dΘ
dξ
− Peliq

dP

dξ

dΘ
dξ

(0 < ξ < ξ(s)); (1.3)

ηvapξ
−n d

dξ

(
ξnρ̃

dP

dξ

)
= −2ξ

d

dξ
ρ̃,

(1.4)

ξ−n
d

dξ

(
ξn

dΘ
dξ

)
= −2ξ

dΘ
dξ
− Pevap

dP

dξ

dΘ
dξ

(ξ(s) < ξ <∞),
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where Pei is the Peclet number. In this case, on the phase-transition boundary (ξ = ξ(s)), we have

ηvap

(
ρ̃(s)

(dP
dξ

)+

− µ̃
(dP
dξ

)−)
= 2(1− ρ̃(s))ξ(s),

(dΘ
dξ

)+

−
(dΘ
dξ

)−
= −mρ̃liq

Ja

(
ηliq

(dP
dξ

)−
+ 2ξ(s)

)
; (1.5)

Θ(s) = Θ∗ ln−1 (P∗/P(s)), (1.6)

where Ja is the Jacobi number.
In Eqs. (1.3)–(1.6), the dimensionless coefficients are written as

Pei =
ρici
λ

kp0

µi
(i = liq, vap), ηi =

æi
a
, æi =

p0k

mµi
(i = liq, vap),

P∗ =
p∗
p0
, Θ∗ =

T∗
T0
, ρ̃(s) =

ρvap(s)

ρliq
, ρ̃liq =

ρliq

ρ
, µ̃ =

µvap

µliq
, Ja =

cT0

l
.

From the initial and boundary conditions (1.2) it follows that

n = 0: P = Pe, Θ = Θe for ξ = 0, P = 1, Θ = 1 for ξ =∞,
(1.7)

n = 1: ξ
(dP
dξ

)
ξ

= −q̃, Θ = Θe as ξ → 0
(
q̃ =

µliqq

2πkp0

)
, P = 1, Θ = 1 for ξ =∞.

In this case, the equation for the self-similar coordinate ξ(m) = r(m)/(2
√
at ) of the labelled boundary can be written

as

ηi

(dP
dξ

)
= −2ξ(m) (ξ = ξ(m)), (1.8)

where i = liq or vap if the labelled boundary is in the regions of filtration of vapor or water, respectively.
Unlike in [7], in the present paper, the compressibility of the liquid was ignored. An analysis of the solutions

shows that for the plane problem (n = 0), this approximation is valid for rather low pressure drops: ∆p � p∗
(∆p = pe − p0 and p∗ = 2ρliqC

2
liq, where Cliq is the velocity of sound in the liquid), and in the axisymmetric

problem, it is valid for low rates of liquid injection: q � q∗ (q∗ = 4πkρliqC
2
liq/µliq). In particular, for cold water

injection (Te = 300 K and Cliq = 1500 m/sec) into a reservoir with permeability k = 10−12 m2, the critical pressure
drop and injection rate are equal to p∗ = 4 · 109 Pa and q∗ = 25 m3/(m · sec), respectively. Therefore, the adopted
model with an incompressible liquid is valid over the entire range of pressure drops ∆p and injection rates q of
practical interest.

The adopted model with constant porosity assumes that the skeleton is cemented rock. Because the com-
pressibility of rock is well below the compressibility of water, this assumption practically does not narrow the region
of applicability of the results.

2. Analysis of the Solutions. Equations (1.3), describing waters filtration, can be integrated. Then, for
the pressure and temperature distributions in the water filtration region, we have

n = 0: P = Pe + (P(s) − Pe)
ξ

ξ(s)
,

Θ = Θe + (Θ(s) −Θe)

ξ∫
0

exp (βξ − ξ2) dξ

/ ξ(s)∫
0

exp (βξ − ξ2) dξ (2.1)

[β = Peliq(Pe − P(s))ξ−1
(s) ];

n = 1: P = P(s) + q̃ ln
ξ(s)

ξ
, Θ = Θe + (Θ(s) −Θe)

ξ∫
0

ξϕ exp (−ξ2) dξ

/ ξ(s)∫
0

ξϕ exp (−ξ2) dξ

[ϕ = ρliqcliqq/(2πλ)− 1].
(2.2)
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In the case where the labelled boundary is in the water filtration region (filtration is accompanied by vapor con-
densation), for its self-similar coordinate based on (1.8), using (2.1) and (2.2), we obtain

n = 0: ξ(m) = (Pe − P(s))ηliq/(2ξ(s)), n = 1: ξ(m) = q̃ηliq/2.

For the vaporized fraction of injected water, we can write

n = 0: γ = 1− ξ2
(s)/[(Pe − P(s))ηliq], n = 1: γ = 1− ξ2

(s)/(q̃ηliq).

From solutions (2.1) and (2.2) it follows that in the water filtration region, the temperature field is determined
primarily by convective heat transfer at rather high rate of water injection when the condition Pe − P(s) � Pe−1

liq

is satisfied for the plane problem (n = 0) and the condition q � 2πλ/(ρliqcliq) is satisfied for the axisymmetric
problem (n = 1).

Substituting solutions (2.1) and (2.2) into Eqs. (1.5), which follow from the conditions on the phase-transition
boundary (ξ = ξ(s)), we obtain

n = 0:
(dP
dξ

)+

= −
µ̃(P(s) − Pe)
ρ̃(s)ξ(s)

+ 2
(ρ̃−1

(s) − 1)ξ(s)
ηvap

,

(dΘ
dξ

)+

= (Θ(s) −Θe) exp (βξ(s) − ξ2
(s))

/ ξ(s)∫
0

exp (βξ − ξ2) dξ +
mρ̃liq

Ja

(ηliq(P(s) − Pe)
ξ(s)

− 2ξ(s)
)

; (2.3)

n = 1:
(dP
dξ

)+

= − µ̃q̃

ρ̃(s)ξ(s)
+ 2

(ρ̃−1
(s) − 1)ξ(s)
ηvap

,

(2.4)

(dΘ
dξ

)+

= (Θ(s) −Θe)ξ
ϕ
(s) exp (−ξ2

(s))

/ ξ(s)∫
0

ξϕ exp (−ξ2) dξ +
mρ̃liq

Ja

(ηliqq̃

ξ(s)
− 2ξ(s)

)
.

In the general formulation, the examined self-similar problem for the system of ordinary differential equations
(1.3) and (1.4) is a boundary-value problem with the conditions at ξ = 0 and ξ =∞ corresponding to the boundary
and initial conditions (1.7). In addition, in the problem there is an intermediate unknown boundary (ξ = ξ(s)), which
corresponds to the phase-transition front, on which the joining conditions (1.5) and the pressure and temperature
continuity conditions (P+ = P− = P(s) and Θ+ = Θ− = Θ(s)) should be satisfied [Θ(s) = Θ∗ ln−1 (P∗/P(s))]. In
the water filtration region, system (1.3) has the analytical solutions (2.1) and (2.2). Using these solutions and the
joining conditions (1.5) and (1.6) in the vapor filtration region for Eqs. (1.4), the boundary-value problem is solved
numerically by the point matching method. In this case, each point matching is a Cauchy problem. For specified
values of the self-similar coordinate of the phase-transition boundary ξ(s) = ξ∗(s), the initial data are the values of
the pressure P (ξ∗(s)), the temperature Θ(ξ∗(s)), and the derivatives of the pressure P ′(ξ∗(s)) and temperature Θ′(ξ∗(s)),
determined from solutions (2.1) and (2.2) and relations (1.6), (2.3), and (2.4). Selection of values of ξ∗(s) continues
until the pressure and temperature at infinity (ξ =∞) satisfy the corresponding second boundary conditions in (1.7)
with specified accuracy.

In the case where in the heat-conduction equation (1.4) the term due to convection (Pevap � 1) can be
ignored, the solution of system (1.4) can be written as

P = 1 +
(
P(s) − 1 +

Θ(s) − 1
η̃vap − 1

) ∞∫
ξ

ξ−n exp
(
− ξ2

η̃vap

)
dξ

/ ∞∫
ξ(s)

ξ−n exp
(
− ξ2

η̃vap

)
dξ

−
Θ(s) − 1
η̃vap − 1

∞∫
ξ

ξ−n exp (−ξ2) dξ

/ ∞∫
ξ(s)

ξ−n exp (−ξ2) dξ,
(2.5)

Θ = 1 + (Θ(s) − 1)

∞∫
ξ

ξ−n exp (−ξ2) dξ

/ ∞∫
ξ(s)

ξ−n exp (−ξ2) dξ (η̃vap = ηvapP̃ ).
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Substituting these solutions into conditions (2.3) and (2.4), we obtain

n = 0:
(
P(s) − 1 +

Θ(s) − 1
η̃vap − 1

)
exp

(
−
ξ2
(s)

η̃vap

)/ ∞∫
ξ(s)

exp
(
− ξ2

η̃vap

)
dξ

−
Θ(s) − 1
η̃vap − 1

exp (−ξ2
(s))

/ ∞∫
ξ(s)

exp (−ξ2) dξ −
µ̃(P(s) − Pe)
ρ̃(s)ξ(s)

+ 2
ξ(s)

ηvap

( 1
ρ̃(s)
− 1
)

= 0,

(Θ(s) − 1)

/ ∞∫
ξ(s)

exp (−ξ2) dξ + (Θ(s) −Θ) exp (βξ(s))

/ ∞∫
ξ(s)

exp(βξ − ξ2) dξ

+mρ̃liq exp (ξ2
(s))[ηliq(P(s) − Pe)/ξ(s) − 2ξ(s)]/Ja = 0; (2.6)

n = 1:
(
P(s) − 1 +

Θ(s) − 1
η̃vap − 1

)
exp

(
−
ξ2
(s)

η̃vap

)/ ∞∫
ξ(s)

ξ−1 exp
(
− ξ2

η̃vap

)
dξ

−
Θ(s) − 1
η̃vap − 1

exp (−ξ2
(s))

/ ∞∫
ξ(s)

ξ−1 exp (−ξ2) dξ − µ̃q̃

ρ̃(s)
+ 2

ξ2
(s)

ηvap

( 1
ρ̃(s)
− 1
)

= 0,

(Θ(s) − 1)

/ ∞∫
ξ(s)

ξ−1 exp (−ξ2) dξ + (Θ(s) −Θe)ξ
ϕ+1
(s)

/ ξ(s)∫
0

ξϕ exp (−ξ2) dξ +mρ̃liq exp (ξ2
(s))(ηliqq̃ − 2ξ2

(s))/Ja = 0.

Here η̃vap = ηvapP̃ is the dimensionless piezocnductivity for the linearized equation of filtration in the region of
vapor motion. In the calculations, we used two limiting values P̃ : P̃ = 1 and P̃ = P(s), and for P̃ = 1, linearization
is performed near the initial value of the pressure in the porous medium (p = p0), and for P̃ = P(s), it is performed
near the value of the pressure on the phase-transition boundary. Numerical analysis shows that the best fit of
the linearized analytical solutions to the solution of the complete system of nonlinear filtration and heat-transfer
equations is obtained for P̃ = P(s). It should be noted that for n = 0 and in the absence of convective heat
transfer in the water filtration region, solutions (2.1) and (2.5) coincide with the solution given in [7]. If filtration is
accompanied by water vaporization, for the labelled boundary in the vapor filtration region, we use solution (2.5)
for the pressure distribution. As a result, for (1.8) we obtain the equation for the self-similar coordinate ξ(m):(

P(s) − 1 +
Θ(s) − 1
η̃vap − 1

)
ξ−n(m) exp

(
−
ξ2
(m)

η̃vap

)/ ∞∫
ξ(s)

ξ−n exp
(
− ξ2

η̃vap

)
dξ

−
Θ(s) − 1
η̃vap − 1

ξ−n(m) exp (−ξ2
(m))

/ ∞∫
ξ(s)

ξ−n exp (−ξ2) dξ =
2ξ(m)

ηvap
. (2.7)

Figure 1 shows pressure and temperature distributions for slow rate (q = 10−6 m2/sec) of water injection at
temperature Te = 280 K. Curves 1 and 2 correspond to the initial temperatures of the porous medium T0 = 373
and 393 K. For the remaining parameters determining the state and the properties of the system, the following
values are used: p0 = 105 Pa, k = 10−15 m2, Rvap = 461 J · kg/K, ρliq,0 = 1000 kg/m3, ρsk = 2 · 103 kg/m3,
λliq = 0.58 W/(m ·K), λsk = 2 W/(m ·K), λvap = 0.02 W/(m ·K), cliq = 4.2·103 J/(kg ·K), csk = 0.9·103 J/(kg ·K),
p∗ = 27,542 MPa, T∗ = 4616 K, l = 1.85 · 106 J/kg, µliq = 1.1 · 10−3 Pa · sec, and µvap = 1.21 · 10−5 Pa · sec. In
Fig. 1 it is evident that in the case where in the initial state, the vapor in the porous medium is near the saturation
point (curve 1), the pressure distribution is nonmonotonic: the pressure on the phase-transition boundary is below
the initial pressure in the porous medium (P(s) < 1). The dashed curves in Fig. 1 correspond to the dimensionless
saturation temperature Θ(s)(P ).
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Fig. 1 Fig. 2

Fig. 1. Pressure and temperature distribution for initial temperatures of the porous medium
T0 = 373 (1) and 393 K.

Fig. 2. Pressure and temperature distribution for initial pressures of the porous medium p0 = 105 (1),
106 (2), and 107 Pa (3).

We obtain a condition for occurrence of a pressure “well” (Fig. 1) in the general case. From boundary
conditions (1.1) it follows that vapor condensation and formation of a pressure “well” near the phase-transition
boundary occur for ρliqlmvliq � λ(∂T/∂r)−.

Using the estimates

mvliq = − k

µliq

(∂p
∂r

)−
≈ k

µliq

∆p
r(s)

,
(∂T
∂r

)−
≈ ∆T
r(s)

(∆T = T0 − Te, ∆p = pe − p0)

for the plane problem (n = 0) and the estimates

mvliq =
q

2πr(s)
,

(∂T
∂r

)−
=

∆T
r(s)

for the axisymmetric problem (n = 1), we find that filtration accompanied by vapor condensation is ensured by the
conditions

n = 0: ∆T � kρliql∆p/(µliqλ), n = 1: ∆T � ρliqlq/(2πλ). (2.8)

The first condition (n = 0) coincides with the condition given in [7]. Although these conditions are in good agreement
with results of numerical analysis, they are valid in practice only for a narrow range of values ∆T , ∆p, and q and low
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Fig. 3. Pressure P(s) on the phase-transition boundary (a), and the position of this boundary ξ(s)
and the labelled boundary ξ(m) (b) versus the flow rate of injected water q for p0 = 105 (1), 106 (2),

and 107 Pa (3).

permeability k. For the axisymmetric problem, condition (2.8) can be satisfied only for low rates of water injection.
In particular, for real values of the temperature (∆T = 1–102 K) and pressure drop (∆p = 0.1–10 MPa), the first
condition in (2.8) can be satisfied for k � 10−16 m2. In this case, because of capillary effects, the filtration pattern
is obviously different. We estimate the characteristic capillary pressure ∆pσ using the expression ∆pσ = σ/d (σ is
the surface tension and d ≈

√
k/m is the linear pore size). For k � 10−16 m2 for water (σ = 0.05 kg/sec2) with

m = 0.1, we obtain ∆pσ � 1 MPa. It should be noted that the filtration regime with a pressure “well” and an
intermediate two-phase zone considered in [6] for k = 10−17 m2 is difficult to attain.

For various initial pressures in the porous medium, Fig. 2 gives temperature and pressure distributions in
self-similar variables for the axisymmetric problem (n = 1) of water injection at temperature Te = 300 K and volume
flow rate q = 2·10−3 m2/sec into a porous medium with temperature T0 = 590 K, porosity m = 0.2, and permeability
k = 10−12 m2. Curves 1–3 correspond to initial vapor pressures in the porous medium p0 = 105, 106, and 107 Pa,
respectively. In this case, ξ(m) = 210.6, 177.4, and 37.4 and γ = 0.23, 0.15, and 0.14, respectively. In Fig. 2 one can
see three characteristic regions in each of which the temperature is nearly constant. For higher values of the initial
pressure p0 of the porous medium and injection rate q of the liquid, the stepped temperature distribution becomes
more pronounced. In this case, in the regions near and away from the injection site, the temperature is equal to
the injected water temperature and the initial temperature of the porous medium, respectively. In the intermediate
zone which is in the water filtration region behind the phase-transition boundary, the temperature and the extent of
this zone depend on the initial pressure in the porous medium. With increase in the initial pressure p0, the extent
and temperature of the intermediate zone increase. Therefore, at low initial pressures of the porous medium, the
underground heat is expended primarily in vaporization of the injected liquid, and at high pressures, it is expended
in heating of the liquid.

Figure 3 shows pressure curves on the phase-transition boundary P(s) and the self-similar coordinate of the
boundary ξ(s), and the self-similar coordinate of the labelled boundary ξ(m) versus the flow rate of injected water.
Curves 1–3 correspond to values p0 = 105, 106, and 107 Pa, respectively.

3. Solution with Temperature Jumps. We consider the injection regime in which heat transfer in the
liquid filtration region is determined primarily by the convective mechanism. In this case, as follows from an analysis
of Figs. 2 and 3, the temperature distribution is close to the stepped one with two jumps. The first temperature
jump is observed in the water filtration region, and the second near the phase-transition boundary. Thus, the
temperature field in the filtration zone is actually determined by three temperature values [T0, T(s)(p(s)), and Te],
and, hence, it is possible to construct an approximate solution with temperature jumps.

Let us write the heat-balance conditions on the boundaries of the two temperature jumps. For the first jump
in the water filtration region (r = r(T )), we have
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vliq − ṙ(T ) = ρ(s)(1−m)csk(T(s) − Te)ṙ(T )/[mρliqcliq(T(s) − Te)]. (3.1)

For the second jump, whose position coincides with the phase-transition boundary (r = r(s)), we can write

ρliq(vliq − ṙ(s)) = ρ(s)(1−m)cliq(T0 − T(s))ṙ(s)/l
′, l′ = l + cvap(T0 − T(s)). (3.2)

In addition, on this boundary we write the mass-balance condition

mρliq(vliq − ṙ(s)) = mρvap(vvap − ṙ(s)). (3.3)

For the zone of water and vapor filtration, the piezoconduction equations are written as

r−n
∂

∂r

(
rn

∂p

∂r

)
= 0 (0 < r < r(s)),

∂p

∂t
= r−n

∂

∂r

(
ævapr

n p

p0

∂p

∂r

)
(r(s) < r <∞). (3.4)

We introduce the self-similar variable ζ = r/(2
√

æliqt ). Then, conditions (3.1)–(3.3) can be written as

dP

dζ
= −2(Ja(T ) +1)ζ(T ) (ζ = ζ(T )); (3.5)

(dP
dζ

)−
= −2(Ja(s) +1)ζ(s), ρ̃(s)

(dP
dζ

)+

− µ̃
(dP
dζ

)−
= 2µ̃(1− ρ̃(s))ζ(s) (ζ = ζ(s)); (3.6)

Ja(T ) =
1−m
m

ρsk

ρliq

csk
cliq

, Ja(s) =
1−m
m

ρsk

ρliq

csk
l′

(T0 − T(s)). (3.7)

The solution of Eq. (3.4) subject to the initial and boundary conditions (1.2) can be written as

0 < ζ < ζ(s): P = Pe + (P(s) − Pe)ζ/ζ(s) (n = 0), P = P(s) + q̃ ln (ζ(s)/ζ) (n = 1); (3.8)

ζ(s) < ζ <∞: P = 1 + (P(s) − 1)

∞∫
ζ

ζ−n exp
(
−ζ

2

η̃

)
dζ

/ ∞∫
ζ(s)

ζ−n exp
(
−ζ

2

η̃

)
dζ, (3.9)

where q̃ = qµliq/(2πkp0) and η̃ = ævapP̃ /æliq. In this case,

Θ = Θe (0 < ζ < ζ(T )), Θ = Θ(s) (ζ(T ) < ζ < ζ(s)), Θ = 1 (ζ(s) < ζ <∞). (3.10)

Using (3.8) and (3.9), from (3.5), we obtain the following expression for the coordinate of the temperature
jump in the water filtration zone:

n = 0: ζ(T ) =
Pe − P(s)

2(Ja(T ) +1)
1
ζ(s)

, n = 1: ζ2
(T ) =

q̃

2(Ja(T ) +1)
. (3.11)

From (3.6) and (3.7), using (3.8) and (3.9), we obtain the system for the self-similar coordinate of the
phase-transition boundary and the dimensionless pressure on this boundary:

n = 0: Pe − P(s) = 2(Ja(s) +1)ζ2
(s),

ρ(s)(P(s) − 1)exp
(
−
ζ2
(s)

η̃

)/ ∞∫
ζ(s)

exp
(
−ζ

2

η̃

)
dζ = 2µ̃(ρ̃(s) + Ja(s))ζ(s);

n = 1: q̃ = 2(Ja(s) +1)ζ2
(s), (3.12)

ρ̃(s)(P(s) − 1)ζ−1
(s) exp

(
−
ζ2
(s)

η̃

)/ ∞∫
ζ(s)

ζ−1 exp
(
−ζ

2

η̃

)
dζ = 2µ̃(ρ̃(s) + Ja(s))ζ(s).

For the coordinate of the labelled boundary in the vapor filtration region, we have

(P(s) − 1)ζ−n(m) exp
(
−
ζ2
(m)

η̃

)/ ∞∫
ζ(s)

ζ−n exp
(
−ζ

2

η̃

)
dζ = 2ζ(m). (3.13)
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Fig. 4. Comparison of the analytical solutions of Eqs. (2.2) and (2.5) (solid curves)
and the solutions of the equations with temperature jumps (3.9) and (3.10) (dashed
curves) for q = 10−4 (1), 10−3 (2), and 10−2 m2/sec (3).

Figure 4 compares the analytical solutions of (2.2) and (2.5) (solid curves) and the solutions with temperature
jumps (3.9) and (3.10) (dashed curves) obtained for p0 = 107 Pa, T0 = 590 K, Te = 300 K, k = 10−12 m2, and
m = 0.2. Curves 1–3 correspond to the flow rates of injected water q = 10−4, 10−3, 10−2 m2/sec, respectively.
It is obvious that the pressure distributions practically coincide. In this case, for the coordinate of the labelled
boundary determined from Eq. (2.7), we obtained values ξ(m) = 8.53, 26.6, and 81.2, and for the coordinate ξ(m)

determined from Eq. (3.13), values ξ(m) = 8.81, 25.6, and 78.1. Thus, the solution with temperature jumps describes
satisfactorily the evolution of the pressure and temperature fields in the case of rather large permeabilities of the
porous medium and the high flow rates of injected water. It should be noted that the self-similar coordinate ζ used
in the solution with temperature jumps is related to the self-similar coordinate ξ as follows: ξ = ζ

√
æliq/a.

For the case p0 = 106 Pa, T0 = 590 K, and k = 10−12 m2, Fig. 5 shows curves of the self-similar coordinates
of the phase-transition boundary ξ(s) and the labelled boundary ξ(m), and the pressure P(s) versus the water injection
rate q. The dashed curves are obtained from Eqs. (2.6) using the solution of the heat-conduction equation and the
solid curves are obtained from Eqs. (3.12) using the approximate solutions with a temperature jump. The dot-and-
dashed curve corresponds to the coordinate of the temperature jump ξ(T ) in the water filtration region obtained
from Eq. (3.11). From Fig. 5 it follows that with increase in the flow rate q of injected water, the pressures on the
phase-transition boundary are close. In this case, the self-similar coordinates of the phase transitions practically
coincide.
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Fig. 5. Pressure P(s) on the phase-transition boundary (a) and the self-similar coordinates of the
phase-transition boundary ξ(s) and the labelled boundary ξ(m) (b) versus the injection rate q, ob-
tained from Eqs. (2.6) (dashed curves) and approximate solutions of the equations with temperature
jumps (3.12) (solid curves).

Conclusions. An analysis of the solution of the problem of water injection into a geothermal reservoir
saturated with vapor shows that in most cases of practical interest, injection occurs in the convective heat transfer
regime in the water filtration and vaporization region on the phase-transition boundary. The filtration regime with
a pressure “well” can occur only at very low rates of water injection and for anomalously low permeability. In
addition, this regime can be observed when the initial state of the vapor is close to the state of saturation.

In the cases of water injection into a porous medium of practical interest there is a step-function temperature
distribution. With allowance for this, a rather simple analytical solution with two temperature jumps describing
water injection was constructed.
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